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Raster images are the standard format for texture mapping, but they suf-
fer from limited resolution. Vector graphics are resolution-independent but
are less general and more difficult to implement on a GPU. We propose
a hybrid representation called vector regression functions (VRFs), which
compactly approximate any point-sampled image and support GPU texture
mapping, including random access and filtering operations. Unlike stan-
dard GPU texture compression, VRFs provide a variable-rate encoding in
which piecewise smooth regions compress to the square root of the origi-
nal size. Our key idea is to represent images using the multilayer percep-
tron, allowing general encoding via regression and efficient decoding via
a simple GPU pixel shader. We also propose a content-aware spatial parti-
tioning scheme to reduce the complexity of the neural network model. We
demonstrate benefits of our method including its quality, size, and runtime
speed.
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1. INTRODUCTION

Texture mapping is a core component for image synthesis [Heckbert
1986]. The standard format is a raster image which is general enough
to support any content and simple enough for random access and
fast filtering. However, the detail supported by a raster image is
determined by its resolution. Obtaining enough detail everywhere
might require extremely large images which compete for space,
especially in limited GPU memory. Vector graphics provide edge
detail at any magnification but are less general and more complex to
encode, evaluate, and filter. Despite recent efforts [Qin et al. 2008;
Nehab and Hoppe 2008; Sun et al. 2012; Ganacim et al. 2014],
raster images remain the standard for texture mapping, especially
in GPU implementations.

We seek a texture map representation that combines the advan-
tages of raster images and vector graphics in order to yield a com-
pact encoding for general content with fast runtime decoding and
filtering.

As a step towards this goal, we propose vector regression func-
tions (VRFs) which map 2D texture coordinates to 3D RGB colors.
VRFs represent any point-sampled input and support GPU texture
mapping, including random access and fast filtering. Standard GPU
texture compression yields a constant compression ratio (defined as
y = |Z|/|¢|, the ratio of original to compressed data size); VRFs
are variable rate and can achieve greater compression. In particular,
they obtain y o 4/|Z]| for inputs consisting of piecewise smooth
regions as in vector graphics. On the other hand, VRFs do not
offer “infinite zoom-in” as with vector graphics, since they can-
not preserve sharp edges with infinite magnification in most cases.
However, VRFs still suffice in practical situations in which infinite
zoom-in is rarely required.

Our key idea is to represent VRFs as neural networks, allowing
general encoding via machine learning and efficient decoding via
simple GPU pixel shaders. The benefits of this regression method-
ology have been demonstrated in prior graphics applications such
as animation [Grzeszczuk et al. 1998], visibility [Nowrouzezahrai
et al. 2009; Dachsbacher 2011], and global illumination [Ren et al.
2013]. For piecewise smooth inputs, our method detects the region
boundaries and encodes the output with proportional complexity,
leading to the square-root compression ratio.

Given an input 2D image Z, we seek a VRF & to approximate
7 based on a set of sample locations S on Z. We assume 7 is well
represented by specifying its values on S, but otherwise arbitrary.
The function @ supports efficient random access and filtering for
runtime evaluation at any sample location. We investigate the mul-
tilayer perceptron (MLP) [Hinton 1989] as the function family to
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Fig. 1. Results of texturing over curved surfaces with vector regression functions.

represent @ and describe the corresponding encoding/training and
decoding/rendering methods. We also propose a content-aware spa-
tial partitioning scheme to reduce the complexity of & for inputs
having complex features.

VRFs are best suited for piecewise smooth imagery, as common
in vector graphics art and some natural photographs, and less suited
for images having high-frequency patterns. For the former, our
method offers square-root compression ratio, and for the latter,
gracefully degrades to a constant compression ratio similar to the
current block-based texture compression standard. Encoding and
decoding our representation are slower than current GPU texture
compression methods but still fast enough for real-time applications
that demand high-quality MIPMAP and anisotropic filtering. See
Figure 1 for an example of texturing over curved surfaces with
VRFs.

2. PREVIOUS WORK

Texture mapping can be achieved by raster images or vector graph-
ics. We brief prior art most relevant to our work.

Raster Textures. Raster images are the standard format for tex-
ture mapping. To ensure high quality as well as low memory and
bandwidth consumption, significant efforts have been spent on com-
pression and filtering for GPU texture mapping.

The current industry standard for texture compression is block-
based, a simple fixed-rate compression scheme that is random-
accessible and amenable for implementation as hardware units
[Iourcha et al. 1999; Strom and Akenine-Moller 2005; OpenGL
ARB 2010; Nystad et al. 2012]. Variable bit-rate compression can
offer higher quality-to-size ratio but tends to be more complex to
decode; thus, existing methods such as that of Olano et al. [2011]
are more suitable for batch loading than random access.

The current industry standard for texture filtering includes bilin-
ear, MIPMAP [Williams 1983] and anisotropic [McCormack et al.
1999; Mavridis and Papaioannou 2011] schemes. These are more
effective for minification, as magnification can still manifest visible
pixelization effects.

Even though compression and filtering can help increase effective
quality and resolution under the same size, they do not change the
fundamental resolution limits of raster textures.

VREF can be considered as a form of variable-rate texture com-
pression but is simple to implement and supports MIPMAP and
anisotropic filtering for minification similar to fixed-rate texture
compression. However, it offers crisp resolution under magnifica-
tion similar to vector graphics and offers much better compression
ratio, usually square root instead of constant fixed rate compression
for piecewise smooth inputs.
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Vector graphics. A major benefit of vector graphics is resolu-
tion independence—infinite resolution upon magnification under
the same data size. Gradient mesh [Lecot and Levy 2006; Sun et al.
2007; Lai et al. 2009; Xia et al. 2009] and diffusion curve [Orzan
et al. 2008; Finch et al. 2011; Ilbery et al. 2013; Sun et al. 2014;
Xie et al. 2014] have emerged as two popular forms of recent vector
graphics development. These offer different trade-offs: the former
tends to be denser, easier to render, and more suitable for automatic
conversion from raster images, while the latter tends to be sparser
and more suitable for manual editing. Boyé et al. [2012] combine
the advantages of both camps by using meshes as the internal rep-
resentation for rendering and curves as the external interface for
authoring. These representations were originally intended for 2D
instead of 3D graphics. In particular, rendering diffusion curves
involves solving a system of equations, and even though some of
these methods can be accelerated by GPU rasterization, they are not
suitable for general 3D texture mapping due to the lack of random
accessibility and filtering support.

Direct support of random access and filtering for vector graphics
appears to be a very challenging problem. One possible solution is
to carefully design a rasterizing method, as in Jeschke et al. [2009],
but this is not exact random-accessible or resolution-independent.
Few methods offer closed-form formula for random access and area
filtering, such as Sun et al. [2012], but tend to have limited scopes
(e.g., accurate only for closed diffusion curves).

Hybrid representations that register vector primitives into
acceleration data structures (e.g., grid or quad-tree) appear to be the
dominant methodology to support vector texture mapping. This can
be achieved by storing either a fixed (e.g., [Sen 2004; Tumblin and
Choudhury 2004; Tarini and Cignoni 2005; Qin et al. 2008; Parilov
and Zorin 2008]) or variable (e.g., [Nehab and Hoppe 2008])
number of primitives per grid cell and/or using an adaptive structure
like quad-tree [Ganacim et al. 2014]. Unlike these methods, VRF
does not offer infinite resolution but can handle images that
are not vector graphics, such as real photographs with smooth
regions.

Neural networks for image compression and superresolution.
There are prior works that apply neural networks for image com-
pression; Jiang [1999] provides a good survey. These methods are
based on a blockwise scheme, which might not be efficient for high
resolution images and filtering. Our method is also based on neural
networks but not a block-based scheme. It is random-accessible and
supports filtering.

Neural networks can also be used in image superresolution to
learn an end-to-end mapping between the low- and high-resolution
images [Dong et al. 2015]. This is a different problem from im-
age compression, as the high-resolution image is usually unknown
and the decoding does not have to be in real time. In contrast to
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superresolution, our method has access to the original high-
resolution image and requires real-time decoding.

3. OUR METHOD

Here we present details of our vector regression function
(VRF), including representation (Section 3.1), training/encoding
(Section 3.2), and rendering/decoding (Section 3.4). Orthogonal to
those, we also describe how to scale up VRF for complex inputs via
a spatial partition scheme (Section 3.3).

For clarity, our presentation focuses on 2D RGB images (R?> —
R3), even though our method applies to different input and output
dimensions (e.g., volume textures or monochrome images).

3.1 Representation

The approximation of an input image Z by a VRF @ can be treated
as a regression problem. Given an input 2D image Z, we seek a
VRF & to minimize the following energy function based on a set
of sample locations S = {(x, y)}:

E= )" IZ(x,y) = &, I M

(x,y)es

Our training data consists of a set of N input-output pairs that sample
Z. The ith pair comprises (s', t'), where s' = (x;, y;) is the input
sample position and t' = Z(x;, y;) is the output value. Compression
is achieved by designing the function ® with a multilayer perceptron
(MLP) [Hinton 1989] regression model, featured with the following
benefits.

—GPU-friendly MLPs are random-accessible, have compact sizes,
and can be evaluated efficiently.

—Expressiveness. Because of the nonlinear nature of MLPs, they
are suitable and effective for capturing nonlinearities described
by primitives of vector graphics.

An MLP is a weighted and directed graph whose nodes are orga-
nized in layers, as illustrated in Figure 2. Nodes in adjacent layers
are fully connected by weighted edges. The weights of the edges
constitute the components of the weight vector w. We use an acyclic
feed-forward network consisting of one input layer with two nodes
for (x, y), one output layer with three nodes for RGB, and several
hidden layers with adjustable number of nodes m. In our implemen-
tation, we choose two hidden layers because they can approximate
nonlinear structures in vector graphics, specifically, continuous or
square-integrable functions on finite domains, with arbitrary small
errors [Hinton 1989]. We keep the same number of nodes for both
hidden layers, as experimentally, we have found this works best for
the images we tested.

Each node in a hidden layer takes inputs from the preceding layer
and computes an output based on the weight vector w. Consider
node j in the ith layer, with n’] denoting its output and w§0 as its

bias weight. For ith hidden layer, n; is calculated from the outputs
of all nodes in the (i — 1)th layer as follows:

. . m P
i o i i—1
2 =wh + Zk:. whni", )

"= o (@), 3

J

where o is the hyperbolic tangent function tanh(z) =
2/(14¢7%) — 1. This formulation takes a weighted sum z’; of
all outputs from the preceding layer and produces the response with
a nonlinear mapping. The nonlinear nature of MLP is embodied by
o. For nodes in the output layer, the final output n’, is simply the

sum z’/ from nodes in the last hidden layer without o.

2" hidden layer

input layer 1* hidden layer output layer
Fig.2. Modeling the VRF by an acyclic feed-forward neural network. This
defines a mapping from the input sample position (x, y) to the output RGB

values.

I

(a) Original. (b)ym =12. (c) 8 zoom in.
(d)ym =6. (e)m = 4. ) m = 3.

Fig. 3. The effects of m, the number of nodes per hidden layer. (a) The
original input with resolution 256 x 256, while (b), (d), (e), and (f) are our
results with different m. (c) 8 x magnification of the enclosed area in (b).

With this MLP representation, the VRF ®(s, w), where w is the
weight vector of the MLP, can be determined by minimizing the
energy function E(w) as

w = arg min E(w) = arg min Z It — &G, w|>. 4)

i

To find ®, we need to determine the structure of the neural network
as well as its weight vector w by minimizing E(w).

3.2 Training

Discretization. As described in Section 3.1, the input to our training
phase consists of discrete input-output sample pairs (s, t'). These
pairs can be obtained from sampling a vector graphics image or
directly from a raster image. Either way, the input to our training
phase is a sampled Z, and sufficient sampling resolution is required
for the VRF & to be able to faithfully reconstruct Z. We ensure
the resolution sufficiency by computing the ratio u of salient pixels
with significant local gradients g(s) > g.:

_ slg(s) > gl
[{s}l
where g, = 0.01L,,, in our implementation, with L,,, being the

average luminance value of the rasterized Z. We define the local
gradient g(s) as the maximum absolute gradient towards all eight

, (%)
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(a) Training error. (b) Data size.

Fig. 4. The analysis of m under different number of hidden layers. The
results are computed from the same example in Figure 3.

(a) MIPMAP + aniso. (b) MIPMAP only. (c) No MIPMAP.
Fig. 5. Filtering with VRF. (a) MIPMAP + 7x anisotropic filtering ren-
dered at 180Hz, (b) MIPMAP only at 1120Hz, (c) bilinear only without

MIPMAP at 1540Hz.

(a) Original.

(b) Salient pixels. (c) Regions.

Fig. 6. Partitioning. (a) Original input. (b) Locations of detected salient
pixels across all resolutions. (c) Visualization of regions of the underlying
k-d tree.

neighborhood pixels ng:

g(s) = maxyeng [Z(s) — Z(s. (6)

For a given vector input, we ensure its rasterized image has u© < 5%
by exponentially growing the resolution from a rough initial guess.
For a given raster input, we use it directly. If the resolution is
insufficient, our method may produce less satisfactory results as
analyzed in Figures 8 and 14.

Adaptive sampling. The discretized input Z may contain a large
number of pixels which are time-consuming to train directly. We
ameliorate this issue by only selecting pixels that are important for
describing the image. Our basic idea is to build a Gaussian pyramid
of 7 and select the set of salient pixels. Specifically, starting from the
rasterized image with the resolution determined by the sufficiency
criterion py < 5% as Z° = Z, we accumulate salient pixel posi-
tions from each down-sized rasterized image Z' down to the image
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(a) Gray-scale image.
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(b) Color image.

Fig. 7. Analysis of KD tree partition for both gray-scale (a) and color (b)
cases. As My increases, the number of ®s, VRF sizes, and rendering speed
decrease.

- : :
Fig. 8. Training resolution. Training with (a) u = 15.8%, (b) n = 8.8%,
©)pu=49%,(d) u =2.6%.

Table I. Statistics

Case resolution % Mupax dax #P
Butterfly 1600 x 1536 4.9% 6 16 633
Car 3192 x 1954 4.74% 10 16 1270
Zephyr 1462 x 1462 4.72% 10 16 948
Flower 1440 x 900* 16.5% 10 16 585

Note: Resolution for training, ratio of salient pixels «, maximum number of hidden
nodes 1,4y across all @ functions, maximum depth of the partition tree dq,, and
number of leaf nodes for k-d tree. The resolution of the flower case is the original
resolution of the raster image.

f ; ;
GANCFACH)
includes accumulated salient pixels and all pixels in Z7, whose
positions {s'} are uplifted to the original resolution of Z with dupli-
cations removed.

T/ with u; > 30%. The final sample set T

Optimization. Given the number of nodes m in each hidden layer
and the training set, we follow Ren et al. [2013] to find the the
weight w by applying the Levenberg-Marquardt algorithm [Hagan
and Menhaj 1994] with a Jacobian matrix calculated based on back-
propagation [Hinton 1989].
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size (KB) RMS (%) encoding time (min) FPS
Case ASTC | BC7 | VRF | ASTC | BC7 | VRF | ASTC | BC7 | VRF | BC7 | VRF
Butterfly 269 3277 86 1.80 0.16 | 0.48 2.3 0.9 60 1300 690
Car 678 8329 340 0.81 0.26 | 046 23 11 222 1240 360
Zephyr 233 5592 207 1.10 0.25 0.49 11 4 61 1290 420
Flower 169 1730 168 0.80 0.42 | 0.90 8 8 150 1300 340
Note: We could not measure ASTC framerate as it is not yet part of the official GPU standard.
The value of m determines the capability of & for capturing the C;;:‘[Pm“
complexity of spatial variations in the image: the larger the m, the 5000 . :l’::;::‘
more complex image features can be represented. One the other 4000 R m_'”'
hand, we need to minimize m because of the quadratic cost increase s ——VRF (flower)
and the risk of over-fitting [Vapnik 1995]. To find the right balance, - ~——ASTC (1bpp)
we determine m iteratively, starting from m = 2 and incrementing it -y
by one until the training error € is below a threshold E. In particular, - == —
> o 40000 EB0ODO 120000 160000 § ——

i It — (s
> e

We set E between 0.5% —1.0%. Figure 3 illustrates the visual effects
of m. Figure 4 analyzes the expressiveness of various numbers of
hidden layers and m. As shown, two hidden layers provide a good
balance between training error and storage size.

(7

MIPMAP. To build a MIPMAP version of ®, we add an extra
level dimension / to our energy formulation:

>3 1z 1) — s D ®)
1 s

In particular, an additional input node is introduced for /. Similar to
input nodes for x and y, it is also fully connected to all nodes in the
first hidden layer.

One option is to build a Gaussian pyramid from the rasterized 7
and train each output level as a separate function ®(_, ., ;) from the
corresponding input level Z(., ., /;) as previously described. How-
ever, through experiments, we have found it better to train a single
output ® for the entire pyramid, which yields a smaller model and
faster evaluation—one direct fetch ® with fractional level num-
ber other than two fetches of pyramid levels followed by linear
interpolation.

Here is our training process. We first determine the set of train-
ing locations {s’} based on the salient pixels of Z as previously
mentioned. We then build a Gaussian stack [Lefebvre and Hoppe
2005] from Z and collect the training pairs from all levels using
the same sample positions {s’}. In particular, the total training pairs
are {(s/, [;, tz )}, where t, = I(s', ;). The training is conducted to
optimize the followmg MIPMAP version of our energy function:

22l
i J

Interestingly, even though we only train discrete levels, linear in-
terpolation between output levels naturally works because of the
coherence between successive input levels, as shown in Figure 5(b).

E(w) = — s, L, w2 )

3.3 Partition

Using a single output ® to represent a complex input Z may require
alarge number of internal nodes. This can incur excessive computa-
tion time for both training and rendering, as the number of weights
in w grows quadratically with the number of hidden nodes.

Fig. 9. Original versus compressed data sizes. ASTC has a constant com-
pression ratio regardless of the input texture content and size/resolution. In
contrast, VRF has a variable compression ratio roughly proportional to the
square root of input data size.

We address this issue by partitioning the input Z into multiple
spatial regions and fitting a separate ® for each region. We use a
k-d tree as the hierarchical data structure, beginning with the entire
7 as the root node, and store a separate ® at each leaf node. Within
this context, the input Z is represented by a VRF set, which consists
of multiple ® functions organized by the k-d tree. Each ® is then
trained individually with the subset of training pairs falling into its
k-d tree region following Equation (4). We choose a k-d tree over
a quad-tree due to fewer and more flexible partitions. The traversal
of a k-d tree plus the evaluation of the corresponding & is usually
much faster than evaluating a single big ® without partition.

Next, we describe the construction of a k-d tree and how we
maintain pattern continuity across tree cells.

Construction. For an input Z, we denote its k-d tree as Q2. The
is constructed in a top-down manner to cover all training samples
selected based on importance, as described in Section 3.2. From
the root node, which covers the whole image, we recursively split
each node if the training error € of its corresponding ® exceeds
a threshold (E = 0.5% as in Section 3.2) or its number of nodes
per hidden layer m exceeds a threshold m,,,,. In our current im-
plementation, we set m,,,, = 6 for gray-scale textures and 10 for
color textures, as detailed in the analysis part (Section 4.1). In each
split, we always choose the longer dimension to divide in order to
maintain good aspect ratios of the subdivided regions. The dividing
point is optimized for best load balance between the two divided
subregions so that they have similar numbers of salient pixels. We
use binary search to find the point that minimizes the difference of
the numbers of salient pixels in the two subregions. An example is
shown in Figure 6.

Continuity. To ensure continuity across adjacent regions, we in-
clude additional training samples from neighboring regions if the
content change is sufficiently smooth. In our experiments, we have
found it sufficient to incorporate additional samples within a 2-
pixel-wide border W along each dimension of the current region if
the corresponding variation Z; of W is below a threshold 0.5. We
can further reduce the discontinuity across the boundary of adjacent
regions by creating a small transition zone for linear interpolation,
even though we have not found it necessary.
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23
=3

Fig. 10. VRF from a vector graphics. The left and right portions are the original input and our reconstructed result. The middle portion shows the 4 x

magnification of the corresponding regions for comparison.

(a) Original.

(b) Reconstruction.

(c) 4% magnification.

Fig. 11. VRF from Sun et al. [2012]. (b) Reconstructed from a 1024 x 1024 image shown in (a). (c) Magnifications of the regions marked in (b). The first
row in (c) is the reconstructed result of Sun et al. [2012] with resolution 4 x zoomed in, while the second row is the reconstructed result from VRF with the

same maginification.

3.4 Rendering on a GPU

Rendering with VRFs can be done purely in a pixel shader. For each
query texture coordinate (x, y), it first traverses the partition tree to
locate the particular @, and then evaluates the result as ®(x, y).

Support for MIPMAP is straightforward by including the texture
LOD parameter / in the input for VRF evaluation, as formulated
in Equation (8). Anisotropic filtering is done by fetching and com-
bining multiple bilinearly filtered samples as in standard methods
[McCormack et al. 1999; Mavridis and Papaioannou 2011], re-
quiring multiple evaluation of the VRF. The quality impact due to
MIPMAP and anisotropic filtering is shown in Figure 5.

We flatten the partition tree 2 as a linear array for storage. Each
array element stores either offsets to child nodes (for internal nodes)
or index to the corresponding ® (for leaf nodes). We pack the weight
vectors w of all @ functions in a single floating-point texture. Due
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to different complexity of the image features in different partitions,
the @ functions can have different m values. For better data layout
and easier indexing, we pack dummy nodes with zero weights into
each @ so that they all have the same m in storage. We observe
speedup rendering performance at the cost of typically doubling the
storage size because the memory alignment improves the efficiency
of texture fetch.

4. EXPERIMENTAL RESULTS

We have implemented the training and partitioning algorithms on
a CPU and the rendering algorithm on a GPU via OpenGL APIs
and GLSL shading language. All results and performance measures
shown here are conducted on a PC with 3.4GHz i7-4770 CPU, 8GB
memory, and NVIDIA GTX 760 graphics card.
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(a) Original.

(b) Reconstruction.

Fig. 12. VREF from a complex vector graphics with rich details.

4.1 Parameters

Fartition. There is a trade-off between the number of & functions
and the complexity of each  within each VRF, as determined by
the k-d tree partition. A simple k-d tree with a small number of
® functions will be faster to traverse, but each ® might contain
more nodes and thus take longer to evaluate. To determine the best
balance point, we have analyzed the partition granularity as shown
in Figure 7. Even though different inputs may have different optimal
configurations, we have found it a good rule of thumb to choose
Mua = 6 for gray-scale textures and 8—10 for color textures.

Resolution. Our method needs sufficient input resolution to pro-
duce good output quality, as discussed in Section 3.2. Otherwise,
discontinuity or high-frequency artifacts may show up for certain
inputs under significant magnification. In Figure 8, we test VRF
training result with a variety of input resolutions with different cor-
responding saliency ratio p. As shown, © < 5% produces good
results.

4.2 Comparisons and Demonstrations

We have tested our method on inputs with different characteristics
and complexities, including both vector graphics and raster images,
as shown in Figures 10 to 13. In general, our method can success-
fully reproduce the original inputs and is compact and efficient for
real-time rendering applications (hundreds KB storage and hun-
dreds FPS). Table I shows detailed statistics of our method. Table IT
compares our method with two block compression methods: ASTC
[Nystad et al. 2012] with state-of-the-art compression ratio but not
yet part of official GPU standard, and BC7 [Microsoft Corporation
2013], a commercial standard method for GPU implementation
(with 8 bpp bit rate). As shown, our method is more compact and
maintains lower error for vector graphics inputs while remaining
competitive for natural images. Our biggest disadvantage is encod-
ing, as training VRF is more time-consuming than ASTC and BC7,
whose block-based scheme is very simple to train.

Figure 9 illustrates the relationship between the storage sizes of
VRF/ASTC and the resolutions of the input images. The training

error threshold E is set to 0.5%. As shown, VRF offers a square-root
compression ratio in contrast to the constant compression ratio of
ASTC and the constant total size of typical vector graphics schemes
(not shown in the figure).

Figure 10 shows a result of vector graphics with sharp boundaries
and thin curved features. The original vector graphics is represented
with Bézier curves and solid interiors. Figure 11 demonstrates a
diffusion curve input which exhibits complex nonlinear gradient
regions with sharp boundaries. This case is demonstrated in Sun
etal. [2012] with rendering speed at 27FPS. Our method, in contrast,
achieves orders of magnitude speedup. Figure 12 is another complex
vector graphics with both smooth and sharp features, such as the
headlight and specular highlights in the car body, which our method
can still successfully capture.

We also push the limit of our method to test on a nature image with
both smooth and sharp features in Figure 13. As shown, our method
can faithfully reconstruct the smooth flower petals and leaf textures
as well as sharp petal boundaries and leaf veins. Figure 14 provides
further tests on natural images from the standard “Kodak” image
set [Franzen 1999]. As shown, our method can provide higher reso-
lutions than existing methods. Similar to Figure 8, insufficient input
resolution can cause our method to produce artifacts, in particular,
sharp features appearing as smooth gradients upon sufficient zoom-
in, as in Figure 14(e). However, these appear to be more visually
pleasing than the pixelization artifacts produced by exiting methods.

5. LIMITATIONS AND FUTURE WORK

We have proposed a new representation for resolution-efficient tex-
ture mapping based on vector regression function (VRF). VRF is
most suitable for images composed of piecewise smooth regions,
offering square-root compression ratio and fast, random-access tex-
turing for real-time rendering applications. We have also compared
our method against ASTC and BC7, state of the art, standard meth-
ods for GPU texture mapping, and have demonstrated smaller stor-
age size under similar rendering quality.

A main limitation of our method is that the output resolu-
tion is always limited in contrast to vector graphics which offers
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(a) Original. (b) Reconstruction.

Fig. 13. VRF from a natural image. (b) Reconstructed from a 1440 x 900 photo shown in (a). The bottom row are 4 x magnified results of the enclosed parts
in the top row.

]

(a) Input. (b) 16 % 16 zoom-in of (a). (c) ASTC - 4bpp. (d) VRF - (a) resolution.  (e) VRF - 16 = 16 resolution.
Fig. 14. LDR-RGB examples from Franzen [1999]. (a) Input images; (b) to (d) are 16 x 16 magnified results (via nearest sampling) with the same resolution

as (a). The bit rate of ASTC is 4bpp. The output sizes of VRF in (d) and (e) are approximately the same as the sizes of ASTC in (c). (d) and (e) are evaluated
from the same VRFs but at 1 x 1 and 16 x 16 the resolution of (a). Notice the artifacts in (e) caused by insufficient input resolution.
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infinite resolution. With sufficient zoom-in, sharp features will ap-
pear as smooth gradients in our outputs. Furthermore, sufficient
input resolution is required to capture small features. While this
can be ensured for vector inputs by dense enough rasterization, we
currently rely on the original resolution for raster inputs. A potential
remedy is proper up-sampling [Fattal 2007; Shan et al. 2008] prior
to training, which can be performed as an orthogonal pre-process
to our method.

Our current implementation consumes long encoding time. We
believe this can be significantly accelerated via GPU/CPU paral-
lelization or alternative neural network training methods.

Traversing a tree partition incurs a variable number of steps. An
alternative is spatial hashing [Lefebvre and Hoppe 2006], which
allows constant and potentially faster traversal time. Since tree
traversal costs less than 10% of the overall shader execution, we
leave such optimization as future work. For images with repetitive
details, storage size can be further reduced by sharing repetitive
content across multiple ® functions. Our method can be easily ex-
tended to high-dimensional texture (e.g., solid texture) and texture
functions (e.g., svBRDFs and BTFs).

In addition to the level number for MIPMAP, it is also possible to
directly train the Jacobian of texture coordinates for anisotropic fil-
tering. Our method can also be applied for higher-dimensional tex-
tures such as 3D volumes. We leave these as potential future work.
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